En un post anterior dimos las definiciones básicas de conjuntos densos y filtros genéricos en conjuntos parcialmente ordenados (“posets”), y enunciamos el Teorema de Existencia de Filtro genérico, que copiamos a continuación:
Teorema 1. Si $\mathbb{P}$ es un poset, $\mathcal{D}$ es una familia contable de subconjuntos densos de $\mathbb{P}$ y $p\in\mathbb{P}$, hay un filtro $\mathcal{D}$-genérico $G$ tal que $p\in G$.
La prueba es una construcción recursiva y depende de $\AC$. La siguiente preocupación es saber cuán ajustadas son las hipótesis de este teorema. Por ejemplo, ¿vale si la familia $\mathcal{D}$ no es contable? Respuesta rebuscada: sin salirse del Universo, no. Continue reading