Del 31 de mayo al 2 de junio de 2017 se realizará en la ciudad de Bahía Blanca el XIII Congreso “Dr. Antonio Monteiro”, dedicado a Lógica en esta edición. Asimismo, habrá sesiones de comunicaciones temáticas en todas las áreas (Álgebra, Análisis, Geometría, Probabilidad y Estadística, Lógica y Matemática Aplicada).
Esta es una ocasión muy especial para mí porque daré un minicurso (de aproximadamente 4 horas) sobre un tema de Teoría de Conjuntos: el Axioma de Martin. Por ahora sólo puedo compartir el resumen del cursito, y con un poco más de tiempo contaré más sobre el tema (ya lo prometí en otro post). De hecho, gran parte del material está en un apunte del curso que di el año pasado (aún en edición), pero hay que adaptarlo para que tenga sentido para un minicurso (que es, más o menos, ¡el mismo trabajo que para adaptarlo para la web!).
A continuación, el resumen:
El enunciado del Axioma de Martin (MA) involucra conjuntos parcialmente ordenados y afirma la existencia de subconjuntos “genéricos” de los mismos. Es una consecuencia de la Hipótesis del Continuo de Cantor, y como ella es independiente del resto de los axiomas usuales de la Teoría de Conjuntos (o “la matemática”, dependiendo del punto de vista). Discutiremos aplicaciones de MA a problemas combinatorios, de Teoría de la Medida muy básicos y aritmética cardinal. Sin embargo, el mayor interés en MA radica en que sus preliminares coinciden en gran medida con los de la técnica de forzamiento (forcing), introducida por Cohen en 1963 y que sigue siendo la herramienta más importante de investigación en Teoría de Conjuntos.
¡Espero verlos por ahí!