Author: Pedro Sánchez Terraf

  • Brevísimo panorama de la Teoría de Conjuntos

    Brevísimo panorama de la Teoría de Conjuntos

    Como parte de un plan de trabajo que debí presentar recientemente, incluí una cortísima reseña sobre teoría de conjuntos. Aprovecho el trabajo hecho para compartirla por aquí. La Teoría de Conjuntos (TC) tiene un doble rol en la matemática: es a la vez su fundamento y dentro de ella es un área de investigación vigente.…

  • Describing Behavior

    This is a follow up of a previous post where a formalization of the concept of behavior –bisimilarity– was presented. Now I want to focus into one approach to characterize “equivalence of behavior,” that is, when two states of a system are bisimilar.

  • Behavior

    I’ll review in this post one of the most important notions of equivalence of behavior used in Computer Science: Bisimilarity. Actually, “behavior” is a very deep word, and it is likely that one can not give a precise mathematical definition of what it means. But in a restricted context, there’s such definition and its surprising degree…

  • ¡Empezamos este miércoles!

    Este miércoles a las 14hs, comenzará el curso Teoría de Conjuntos, dictado por su servidor en la Universidad Nacional de Córdoba.

  • Modelos del Universo

    Después de reflexionar un rato sobre las pruebas de independencia en Teoría de Conjuntos que usan el método de “forzamiento” o forcing, una conclusión que se puede sacar es que no es tan anti-intuitivo poder agregar un conjunto nuevo, i.e., que no se pueda obtener a partir de los ya existentes usando las operaciones usualmente…

  • Introducing Modley

    I have a brand-new favicon at this blog. It is actually a very simple, albeit special, smiley (or “emoji,” of you prefer): Modley is, as most of you have already noticed, the “consequence” or “satisfaction” symbol used in model theory and in Logic in general, rotated 90° counterclockwise. You may typeset the actual symbol $\models$…

  • Obscene Mathematics

    Several years ago, I had the idea of setting up a mathematics website. One candidate name was “F!cktorial. Mathematics under consent of the King.” Luckily, I was unable to attain this goal, but I found a YouTube username, Numberphile, that almost fits the bill. I’ve watched two of Numberphile’s videos, they were rather interesting. The…

  • Happy $\binom{2^6}{2}$!

    In the Southern hemisphere we are enjoying summer games, like drawing some Boolean algebras. If you’re bored, you may try and check if the drawing is correct.

  • Naïve set theory

    This post is sort of a translation and a follow-up of a post in Spanish about the comparison between naïve and axiomatic set theory. The point I made in the previous post is that One leaves naïve set theory in the moment that first order logic (FOL) gets explicit. Or, from a different perspective, when…

  • Teoría de conjuntos ingenua

    Abstract. I’ll discuss one view of the naïve-axiomatic dichotomy in Set Theory. My claim is that one leaves the “naïve” world when first order logic (or put differently, the possibility of different models of ZFC) becomes explicit. En muchas ocasiones se utiliza el término teoría de conjuntos ingenua; incluso el libro de Halmos se llama…